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Motion and force

“ The main purpose of science is simplicity and as we understand more
things, everything is becoming simpler. JJ

Edward Teller, Conversations on the Dark Secrets of Physics (1991)

Chapter context @ Key terms introduced
~> displacement
This chapter deals with how things move and introduces you to some > velocity
important related concepts that extend throughout physics—in 5 acceleration
particular, the conservation of momentum. > 1
orce
Learning objectives ~> Newton’s laws of motion
~> work done
In this chapter you will learn about: > power
-> distance and displacement, speed and velocity, and acceleration SN
—> displacement—time and velocity—time graphs - impulse
=> the kinematic (suvat) equations
-> forces and Newton’s three laws of motion
~> the effects of friction @ DP link
-> . .
work, energy and power In the IB Physics Diploma
= conservation laws Programme you will learn
> momentum and impulse. about units when you study
1.1 Measurements in
1.1 Faster and faster physics.

You will learn about distance
and displacement in
2.1 Motion.

There are two aspects of motion to study—how it is defined and
measured, and how it can be changed. This first section looks at the
basic definitions and how they are linked.

Mass, length and time

All cultures measure the quantities used in everyday life, but they use many different units;

for example, mass is measured in grams, ounces (to measure gold) and maunds (an Indian
unit). Science uses a single agreed system of units that was established in 1960, though its
development began well before that. It is called the SI (Systéme Internationale d’unités). Seven
base units are defined as fundamental units. All other units are derived from these and are
secondary units.

The fundamental SI units used in this book, together with their abbreviation and quantity, are:
¢ mass: the kilogram (kg)

¢ length: the metre (m)

o time: the second (s)

o electric current: the ampere (A)

* amount of substance: the mole (mol)

o temperature: the kelvin (K)

A fundamental unit not used in the Physics Diploma Programme is the candela (cd), the unit of
luminous intensity.



Distance is the length of a
path travelled between two
points. Itis a scalar quantity.

Displacement is the
difference (in magnitude
and direction] between an
initial and final position. It is
a vector quantity.

The units of distance and
displacement are the
metre (m).

A scalar quantity has only
magnitude; a vector quantity
has both magnitude and
direction.

Vectors and scalars occur in
many topics, notably in the
kinetic theory of gases

(3.2 Gas laws]).

In the IB Physics Diploma
Programme, ideas about
motion are studied in

2.1 Motion, and vectors
are studied in 1.3 Vectors
and scalars.

Imagine running round an athletic track. Figure 1 shows a map of the
track. The total distance around the track on the inside lane is 400 m.
When you have run halfway round, how far have you travelled?

‘ 25 m due 200m
north

Figure 1. Distance and displacement on a race track

One answer is 200 m—half the track length. This is the distance you
have run. It is a measure of how much ground you have covered
irrespective of direction. It is a scalar quantity.

But another way to look at it is that you are only 25 m away from
your starting point and due north of where you began. This is your
displacement, which is a vector quantity, and always requires a
magnitude (the number part) and a direction (the start-to-finish
information).

Continue running back to the starting point. Your distance travelled is
now 400 m but your displacement has become zero.

Calculate for your journey from home to school
your displacement (including direction)
your distance travelled.

Identify how your answers to (a) change for your journey
going from school to home.

You need to know how to manipulate scalars and vectors. Here are
the ground rules:

Adding and subtracting: Scalars are numbers, and are added and
subtracted like ordinary numbers.

In adding or subtracting vectors you must take account of the
direction as well as the size. The best way to see this is to begin
with a scale drawing. Imagine that a boy cycles 3 km due north
along a straight road and then 4 km along another road that goes
due east (figure 2).



Table 1. Examples of scalars
and vectors

B C
Examples Examples
of scalar of vector
quantities quantities
mass weight
-9 ¥ speed velocity
] w—l— E time acceleration
S energy force
Figure 2 power magnetic field
strength

From figure 2, the total distance travelled is (3 + 4) = 7 km. What is
the displacement? It is measured from the beginning of the journey,
A, direct to the end of the journey, C. There are two ways to work
this out.

temperature | electric current

One way is to use trigonometry. Compute the distance using

> . 2 2 _
Pythagoras’s theorem: +/3° + 4° =5 km There are some notes on

and compute the angle using 6 = tan™ (g) = 53°. trigonometry at the end of

1.2 Pushes and pulls.
So the displacement is 5.0 km in a direction N 53°E.

The other way is by scale drawing. Draw the first vector upwards
(north), 3 cm long (using the scale 1 km =1 cm). At the top end
of this vector (which shows where the boy was after the first leg
of the journey) draw a second line. This should be 4 x 1 cm, that
is, 4 cm long, and should go to the right. Use a protractor (or
squared paper) to ensure that the angle between the vectors is
90°. The displacement is the vector (called the resultant vector)
that stretches from the start of the first vector to the end of the
second vector. Measure it and it should be 5 cm long; use a
protractor to check that the angle between the first vector and this
resultant is 53°.

To subtract vectors by scale drawing, treat the vector being
subtracted as though it had the opposite direction to its actual
direction. Then add this new (negative) vector to the other.

The idea of adding a scalar to a vector in physics has no meaning.
It is like adding an energy in joules to a velocity in metres per
second.

Multiplying and dividing: Again, scalars are multiplied and divided
just like ordinary numbers.

It is possible to multiply a vector by a scalar. The direction does not
change, and the magnitude of the vector is multiplied by the scalar.
A velocity of 10 m s! in a direction due east that is multiplied by 5
becomes 50 m s! still in the direction due east.

There are two ways to multiply vectors together (called “dot”
and “cross” products); you may meet them in the IB Mathematics
Diploma Programme, but they will not be required in Physics.



average speed

_ totaldistance travelled
totaltime taken

average velocity

_ changeindisplacement
time taken

The units of speed and
velocity magnitude are
metres per second (m s
itis not usual to write m/s
even though you might
have done so in earlier
study]. Speed is a scalar
quantity; velocity is a vector
and always needs both
magnitude and direction.

You will learn about
significant figures and their
treatment when you study
1.2 Uncertainties and
errors.

Table 2.
Time (s) Distance from
start (m)
0 0
1 2
3 16
5 44
/ 86
9 142
11 205
13 275
15 345
17 415

We often need to know not just the length of our journey but also how
quickly we travelled. To do this we define two quantities that mirror
the distance and displacement quantities: these are speed and velocity.
For the calculation of speed or velocity we often use the time average.
Time here is the travel time between measuring the first position and
the second position.

Worked example: Speed and velocity @

1. Look again at the running track shown in figure 1. If it takes
you 40 s to run halfway round, you cover the distance with an

200 .
average speed of w D _5.0ms". But the average velocity
S
25
is <22 = 0.63 m s due north.
40s

The running track problem has its answers expressed to two
significant figures (2 sf) because this was the smallest number of sf
expressed in the data. Writing “200 m” implies that we know the
value to the nearest metre, that is, 200 £ 1 m; this is 3 sf, whereas
“40 s” implies that we know the time to the nearest second (2 sf).

Never quote an answer to better than the smallest number of sf in the
data. And be careful with rounding when you adjust the final answer.

Decimal places (dp) are often confused with significant figures:
123.45 is a value quoted to 5 significant figures and 2 decimal places.

A good way to avoid being tripped up by sf and dp is to use
standard form: 1.2345 x 10°. When you deal with small or very
large numbers such as the mass of a proton (1.67 x 10 kg to 3 sf),
standard form is crucial.

A teacher walks 5 m north, 2 m east, 5 m south and 2 m west.
The whole journey takes 42 s. Calculate the teacher’s
average speed b) average velocity.

Give two examples of a vector quantity and two examples of a
scalar quantity.

Car drivers realize that an important fact about a car journey is not
necessarily the average speed, but the speed that a roadside camera
records! This is known as the instantaneous speed, the speed at one
moment in time. For a car, it is the speed indicated by the speedometer.

Graphs make it much easier to visualize speeds compared to data
tables. To demonstrate, consider the data for the distance travelled by a
car in a straight line during the first few seconds of a journey in table 2.
These data could be laboriously transformed into a set of average

speeds by working out the distance travelled between successive pairs
and dividing by the time between them, but plotting the graph from the
distance-time data shows details of the motion straight away.



Figure 3 shows the data plotted as a graph of distance (y-axis) against
time (x-axis) with the best-fit curve drawn.

The car moves slowly at the start, so the gradient of the graph is small.
As time goes on the speed increases (the graph is steeper) until it
becomes constant (a straight line beyond 10 s).

The instantaneous speed at a particular time can be determined from a
distance-time graph by finding the gradient of the line at that time.

The technique below applies to finding the gradient of any graph at a
point, whether a straight line or a curve. This example is a distance-
time graph, and we require the instantaneous speed at a time of 7.0 s.
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If the graph is a curve, draw a tangent to the line at 7.0 s (if the
graph is a straight line then this step is not needed). The tangent
line should be as long as possible.

Read off the intercepts on the axes and work out the gradient from:
change in the y-direction

change in the x-direction '

The values for this example are on the graph.

Treating this as an equation, you will see that the
change in distance / m

gradient = — = speed, measured in m s
change in time / s

=9.7, measured in m s™.

Always quote the quantity and the unit in the final answer for a
gradient (s0 9.7 m s™).
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Figure 3. Distance—time data
from table 2



speed/m st

acceleration
changeinvelocity

time taken for change

The unit of acceleration

ism s, which is the

, (m s’l)
equivalent of —
Table 3.
. Speed
Time (s) (ms)
0.0 0.0
1.0 1.5
2.0 3.0
3.0 4.5
4.0 6.0
2.5
2.0 ¥
1.5+
1.0
0.5
0
0 T T T T T 1
20 40 60 80 100 120

time/s

Figure 4. Speed—time graph

The distance-time graphs below show the motion of three
objects, A, B and C.
A B C

distance/m distance/m distance/m
25 15 10—7----»

0 0
0

0

5 time/s 0 2

5 time/s 5 time/s

Describe the motion of the objects as fully as you can.

A car travels at a steady speed of 22 m s™! for 20 minutes. Then
the car goes a further distance of 35 km for 15 minutes.

Calculate:
the distance travelled in the first 20 minutes
the average speed for the 35 minute journey.

The final quantity used to describe motion is acceleration. This is a
measure of the rate at which velocity changes. The word “rate” is
another way to say “change in [quantity] per unit time”.

Table 3 gives data of the speed every second for a car that moves from
rest. After one second the car goes from 0 to 1.5 m s so the change in
speed in the first second is 1.5 m s,

In the time from 1 s to 2 s the change in speed is again 1.5 m s™*
(=3.0-1.5).

In the third second (2 s to 3 s), the speed change is (4.5 — 3.0), still
1.5ms™.

So for this journey, in every second of the motion, the speed increases
by 1.5 m s™'. The change in speed is 1.5 m s per second; this is an
acceleration of 1.5 (m s™') s7!, written as 1.5 m s.

Acceleration is a vector quantity (with direction), though you will
not always know a direction. If in doubt as to what is needed, always
assume it is a vector and quote a direction if possible.

Again, there is a distinction between average acceleration (the
change in speed each second over a definite time interval) and the
instantaneous acceleration (the change in speed each second at

one instant in time). And again, a graph shows these distinctions
(figure 4).

First, look at the overall shape of the graph and see what it shows: the
object starts at rest (meaning it has zero speed at zero time). Then the
speed increases steadily for the first 4.8 s. The gradient of this straight
line (region OA) gives the acceleration. From 4.8 s to 8.0 s (region AB)
the speed does not change; the gradient of the graph, and therefore the
acceleration, is zero. From 8.0 s to 12.0 s the speed is decreasing, so
the acceleration now has a negative value.

One term often used to describe a decrease in speed is “deceleration”.
Take some care with this: it is better to call the quantity “acceleration”
and then to use a minus sign to make it clear that the gradient of the
velocity-time graph (and therefore the acceleration) is negative.



There is more information to be gained from a speed-time graph such
as figure 4.

As discussed before, the quantities speed and time give acceleration

speed

from . But notice that the definition for speed can be rearranged

time
to give distance = speed x time. The quantity (speed x time) represents
the area under a speed-time graph. We can work out the distance
travelled for part or all of a journey by calculating the area under the line
for the speed-time graph. The units for speed x time are (m s™) X (s).
The units of seconds cancel, leaving only metres, as you should expect.

s Select the area for which you need to know the distance.

504 Always calculate the area starting from the time axis (that
- is, from zero speed upwards). In the example in figure 5,
2 154 L this is particularly important for times between 8.0 s and
% i’ 12.0 s.
g - W Divide the area into easily calculated regions, either

0.5 4 rectangles or right-angled triangles. In figure 5, two

triangles and two rectangles do the job. When there is a

T T T T T 1 > ] 3
0" .0 40 60 80 100 120 curved line you may have to estimate the area (figure 6).

time/s Either count the squares in the grid (best for curves) or
Figure 5. Calculating area by the use calculate the area (best for lines). Remember that the area
of regular shapes of a triangle is % x base x height whereas a rectangle is
base x height.
Add together all the areas to get the total distance.

Table 4. Area calculation for the speed—time graph in figure 5

Area Calculation Distance/m
1
W EX[4'8_O]X2'O 4.8
X (8.0-4.8)x20 6.4
1
Y —x(12.0-8.0)x (2.0—1.0) 2.0
2.5+ 2
v v VA (12.0-8.0)x 1.0 4.0
2.0
- N\ Total 17.2
© 154
E / In the example the total distance travelled is 17.2 m—
g 1.0 Y probably best expressed as 17 m to 2 sf.
’ 05 If you cannot divide the area into regular shapes, then count the
s number of squares, as shown in figure 6.

0" .0 40 60 80 100 120 There is a tick in every complete large square, and some ticks

time/s Where incomplete squares are roughly equivalent to one large
square, making about 19 squares altogether. An estimate to
the nearest square is as good as you will be able to manage.
Each square is 0.5 m s™! by 2.0 s in area, in other words

1.0 m. So, 19 m underneath the graph in total.

Figure 6. Counting squares to
estimate area
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velocity/m s

6.0+

4.0

2.0+

A velocity-time graph can give even more information, this time
including direction. Figure 7 shows a graph for a journey along a

straight line (we need to know this, otherwise we cannot make some

—2.04

—4.04

—6.04

—-8.0-

Figure 7. Velocity—time graph

. of the later deductions). As usual the gradients of the graph give the

time/s

50 100 150 200 1250 300 accelerations (also in the direction of motion). This time, however, the
line goes below the x-axis. When it does so, the velocity is negative.

This means that the object is now travelling back towards the starting

point. The area is also negative and represents displacement back

towards the starting position.

Worked example: Analysing velocity—time graphs

2. Analyse as much as you can of the motion for figure 7.

e

Time/s

Analysis

0-10

Accelerating; acceleration is 0.40 m s7%; displacement is
20 min +ve (positive) direction

10-14

Slowing down to zero; acceleration is —1.0 m s7%
displacement is 8 min +ve direction

14-18

Stationary; no change in displacement

18-23

Accelerating but towards starting point; —1.4 m s
displacement is —172.5 m

23-26

Slowing down so accelerating in +ve direction; +2.3 m s7*

displacement is —10.5 m

0-26

Displacement is +20 + 8 — 175 - 10.5=0 m so object
arrives back at starting point

The graph shows the variation of speed with time for a car.

154
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State the maximum speed of the car.
Calculate the acceleration for

the first 20 s of the motion

the last 10 s of the motion.

Determine the distance travelled in the first
40 s.

Determine the average speed for the whole
journey.

A series of speed-time graphs are shown for four different journeys, A, B, C and D.

35 mmmmm Ao
- 1
| B !
NWIC | e e e e e e e e L
‘.'
~ 1
nel 1
GRS Cc
o
2]
1
1
0 T 1
0 10 20

time/s

Compare the journeys of A and B in as much
detail as you can.

Describe journey C.
Describe journey D.



Speed-time graphs are a good way to visualize motion, and to estimate
acceleration and distance travelled. However, sometimes there is

a better method for calculating either the speed or acceleration or
distance travelled: the kinematic equations. These equations are
sometimes called the suvat equations from the symbols used:

You will learn about the
kinematic (suvat] equations
in 2.1 Motion.

distance travelled
initial speed 1% final speed
acceleration

~ Q < O»

time taken

To use these equations we assume that the acceleration is constant
and does not change throughout the motion. The acceleration is said to
be uniform when this is true.

The four kinematic equations make assumptions about the systems they describe. The most
important is that the acceleration is constant. When this is not true, the equations are not valid
(and you may be penalized in an examination for using them). An example is a skier moving down

a hill with a varying slope. The acceleration down the slope will not be constant so the equations
do not apply.

Another assumption is that we are dealing with point objects. We do not consider the mass or
distribution of mass of the objects.

These equations apply to translation only, not rotation (though they can be extended to rotation, as
you will learn if you study Option B of the IB Diploma Physics Programme).

The speed-time graph below (figure 8) shows the change in speed of
an object over time t. Compare the starting and finishing speeds with
the list of symbols above. The graph is a straight line and, of course,
this tells us that the acceleration is constant. The derivations for the
four equations, related to the graph, are shown below.

A
1%
, (v—u)
gradient= :
Ee]
o 1
=3 areaA=§><[v—u]><t
u
areag=u Xt
0 >
0 . t
time

Figure 8. Deriving the suvat equations

Equation 1
The acceleration is the gradient of the graph, so
change in speed ~ (v-u)

acceleration, a = — =
time for speed change (t-0)

v-u
a= ; and therefore v = u + at.




Equation 2

The distance travelled (area under the graph) can be evaluated as two
areas: area, and area,.

The total area, s (distance travelled), is
1 1

area, + area, =—x(V-u)xt+uxt=—xatxt+uxt
2 2

(this also uses v = u + at rearranged as v — u = at)
. 1
which becomes s = ut + > at.

Equation 3
Combine equations 1 and 2 and eliminate ¢ to give v* = u? + 2as.

Equation 4
V+u
Eliminate a from the others to give s = (T)t

Worked example: Using the kinematic (suvat) equations @

3. A car accelerates uniformly along a straight road, taking 13 s to change its speed from 8.0 m s™!
to 34 m s™'. Calculate

a) the acceleration of the car
b) the distance travelled by the car in the 13 s time period.
Solution
a) Begin by writing down what you know and what is required.
t=13s
u=8.0ms!

v=34 ms!
a="?

_v—u_(34—8)_
13

so a 2.0 m s>

1 1
b) S=ut+5at2=8x13+zx2x132=104+169=273m

As all the data are to 2 sf, the distance travelled is best given as 270 m.
4. An aircraft lands on a runway, taking 920 m to stop from a landing speed of 45 m s™.
Calculate
a) the time to stop
b) the average deceleration.

Solution
a) s=920m
u=45ms™!
v=_0
t=2?
2 2x920
Equation 4 can be rearranged as ¢ = oS _ X 40.9 s or 41 s to 2 sf.

b) One route is to use v* = u? + 2as
So 02=45%+2 xax 920 (it is important to link the values to the symbols:
45°=0%+2 x a x 920 is wrong)
2025
2x920

=-1.1ms?to 2 sf (notice the minus sign; it tells us that the aircraft is
slowing down, so this is a deceleration)



A motorcyclist accelerates uniformly from rest to a speed of 45 m s™! in 12 s. Then she brakes
with a uniform deceleration to stop in a distance of 85 m.

Calculate, for the first 12 s of the journey,
the acceleration
the distance travelled.
Calculate, for the second part of the journey,
the deceleration
the time taken to stop.
Sketch a graph to show the variation of speed with time for this journey.
Use the graph to calculate the average speed for the whole journey.

When an object falls from rest close to the Earth’s surface, it
accelerates downwards. The magnitude of this acceleration due to
gravity, given the symbol g, can be measured by dropping a small
ball from rest below an ultrasound sensor connected to a data

You will learn about the
acceleration due to gravity
and its determination in

logger. 2.1 Motion and in
Table 5. Averaged results for the experiment in figure 9 6.2 Newton's law of gravitation.
Time (s) Speed (ms™) Time (s) Speed (ms™)
0 0 0.35 3.64 ultrasound
0.05 0.45 0.40 3.64 i senser
0.10 1.04 0.45 4.10
0.15 1.36 0.50 4.55 Q)
0.20 1.95 0.55 5.36
0.25 2.60 0.60 0.00
0.30 3.12 0.65 0.00

J

Data loggers can usually be programmed to produce either a
distance-time graph or a speed-time graph; the latter gives more
information.

Table 5 gives the averaged speed-time results for three runs of this
experiment. The results for 0.60 s and beyond show that the ball
must have stopped moving somewhere between 0.55 s and 0.60 s. It
probably hit the bench.

To find the value of g:

1. Begin by drawing the graph and then constructing the best-fit line
(there is advice in the Maths skills section on page 12). Notice that Q
there are some random errors in the measurements.

Figure 9. Measuring the
2. Measure the gradient and use it to calculate g. Compare your answer  zcceleration due to gravity, g

with the accepted value.

3. There is more you can find out from this graph. Think about the
other quantity that a speed-time graph can give. What will it tell
you in this experiment?



Use sensible scales for your axes: 1:1, 1:2, 1:5 are good; 1:3, 1:6, 1:7 and 1:9 are hard to use.
A graph should occupy at least half the grid on the graph paper.

To achieve the point above, consider using a false origin (one that is not (0,0)).

Mark your data points consistently and clearly, use %, +, ©.

All marks on the graph (plots or lines) should be drawn with a sharp pencil.

Label axes correctly with the quantity / power of ten and unit, for example distance / 10° m.

Draw straight lines with a transparent ruler (so you can see all the points at once).

Draw curves free-hand, in one movement that you have practised several times without putting
the pencil to paper. Turn the paper before you start so that your hand is on the inside of the curve.

Get a balance of points on each side of the line (whether straight or curved). Make the total
distance from points to the line as small as possible.

If there are error bars on the data, draw the line through all the error bars if possible.

Don’t force the line through the origin unless you are sure this is the correct physics for the
situation.

A cyclist accelerates uniformly from rest to a speed of 9.0 m s in a time of 45 s. Then he
immediately applies the brakes and stops with uniform acceleration. The braking distance is 27 m.
Calculate, for the first 30 s,

the acceleration the distance travelled.
Calculate, for the braking,
the acceleration the time taken to come to rest.
Determine the average speed for the whole journey.
Figure 10 shows the speed-time graph for a sprinter in a race.

12 - Determine

0l the acceleration of the sprinter at the start
of the race
the total distance travelled in 6.0 s

the average speed of the sprinter over the
first 4.0 s.

speed/m st
[op] [e0)
1 1

N
|

no
|

1
0 1 2 3 4 5 6

time/s

Figure 10. Speed—time graph for a sprinter



You may have been taught that a force is a push or a pull that acts on

something due to another object. In this section you will look at forces:

what they are and what they do.

Imagine a ball resting on a table on the Earth’s surface (figure 11).
The ball is not moving relative to the table or the Earth even though
the gravitational pull of the Earth and other forces are acting on it.
This is because all the forces are balanced. We say that the ball is in
equilibrium.

force from table atoms gravitational force of
acting on ball ball on Earth

gravitational force of force from ball atoms
Earth on ball acting on table
BALL TABLE AND EARTH

Figure 11. Balanced forces between a ball and a table

However, a careful examination of the forces shows that the situation is
more complex than this. As well as the gravitational effects, the surface

of the table and the ball are deformed slightly by the gravitational
forces that are acting. The diagram shows these four forces (the ball
and the table are separated for clarity):

the weight of the ball (the Earth’s downward gravitational pull
on it)

the gravitational force of the ball on the Earth upwards (this has a
tiny effect as the Earth is so large, but it exists)

the spring force of the table upwards on the ball as the surface tries

to return to being flat

the spring force of the ball downwards on the table as the ball tries

to return to being spherical.

The gravitational forces and the spring forces are balanced, so the net
force (all the forces added together) is zero.

A crucial point to recognize here is that the directions of the forces are
discussed as well as their magnitude. Forces are vectors and have both

magnitude and direction.

You will learn about forces
and Newton’s laws of motion
when you study 2.2 Forces.

When a force acts on an
object, the object moves

if it is free to do so. More
precisely, the force causes
an acceleration. Unless, that
is, some other force prevents
the motion.

Balanced forces are
discussed further in the
context of Newton’s third law
of motion later in this section,
and frictional forces are
covered in Friction effects at
the end of this section.



Newton’s first law of motion
states that, when no external
force acts on an object, the
object remains stationary

or continues to move with a
constant velocity.

Figure 12. A page from
Newton’s Principia in which
he discusses the three laws
of motion (and much more)

Figure 13. Not how cannonballs really travel

a) b)

Figure 14. Galileo’s thought experiment

Some more examples of cases in which forces are balanced include:
an ice cube floating at rest in a glass of water

an aircraft moving at a constant velocity, where the thrust and the
air resistance are exactly in balance

a child pulling a sled at a constant velocity along snow (the
tension in the rope to the sled is equal to the friction at the snow
surface).

If you live in a part of the world that is very cold in winter, you

will be very familiar with the sled example above. When a sled is
pushed on a horizontal surface it can travel for a long distance before
stopping; the frictional force of the ice on the runners is small. What
would happen if there were no friction at all? The answer is that

the sled would continue to move at a constant velocity. This is the
basis of Newton’s first law of motion. A net force must act before an
object’s velocity can change (that velocity could be zero if the object
is initially stationary). The use of velocity rather than speed here

is crucial because, as you will see when you study circular motion,
the direction of the force vector relates to the direction of the vector
change in the velocity.

Newton was not the first to recognize the relationship
between force and change in velocity. Galileo and
others were beginning to come to this conclusion in
Europe during the 16th century. Before then people
thought that force had constantly to be supplied to
enable an object to keep moving. This picture, drawn
by Diego Ufano, a Spanish military engineer who died
in 1613, shows how people once thought cannon balls
moved in the air, running out of “force” just before they
fall vertically to the ground (figure 13).

Galileo
performed

a “thought
experiment”

to help himself
see what was
happening. He
imagined a ball,

c)

released from rest, on a V-shaped ramp (figure 14). The ball reaches the same height on the right-
hand side of the ramp in a) and b) if no friction acts. What happens if the right-hand side of the
V is made horizontal? Galileo realized that the ball would roll on for ever—no force, no change in

velocity.

Newton recognized the importance of the work of earlier scientists to his own thinking. He said:
“If I have seen further, it is by standing on the shoulders of giants”; he was probably using the idea
of 12th-century philosopher Bernard of Chartres, who realized that truth almost always builds on

previous discoveries.



Force, mass and acceleration are related by:
force = mass x acceleration F=ma

Notice that m is a scalar quantity and a is a vector; this is
permitted, because the mass quantity simply multiplies the vector
and does not change its direction.

A consequence of this is that the direction of a and the direction of
F are the same.

Only one F is referred to in the equation. This is the resultant
force or total force if there are two or more forces. You met the
idea of adding vectors in 1.1 Faster and faster in the “Scalars and
vectors” section. You can use the drawing or calculation method
for forces too.

Worked example: Newton’s second law of motion @

5. A car of mass 900 kg accelerates from rest to 15 m s in 50 s.
Calculate the resultant force acting on the car.
Solution

. 1
Usmgv=u+at,a=T=O.3)OmS‘2

So 